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Abstract

We present and evaluate the design of a system that allows users to combine private data
into data pools using trusted execution environments and manage these pools by issuing
digital rights tokens (DRTs) to third-party data analysts. Digital rights token represent spe-
cific rights to a pool of data and are issued on the Algorand blockchain. Data analysts can
purchase the right to execute open source code on the combined encrypted data and re-
ceive the result from this code execution, but not the underlying data. Different from other
information infrastructures, the operators of the Nautilus platform cannot access the pri-
vate data, which protects users’ rights to their data. We discuss applications of the platform
to financial and healthcare data analytics.

1 Background

1.1 Digital Privacy

For legal scholars, privacy is a contentious concept with different, overlapping and competing,
schools of thought [1]. These include : (i) Privacy as the right to be let alone [2]; (ii) Privacy
as secrecy [4]; and (iii) Privacy as control over personal information [5]. For this paper, we
focus on digital privacy, i.e. privacy that pertains to "social and economic activity conducted
online" [6]. Discussions of privacy have been shaped by technological and social innovations,
ever since Warren and Brandeis’ seminal article “The Right to Privacy”, published in 1890 under
the impression of a boom in photography and newspaper distribution.

Our goal is to find the most suitable definition of digital privacy without binding ourselves
to the constraints of existing information systems. Towards this end, first note that all four
notions of privacy contain an element of privacy as control over information.

*Support by the Algorand Foundation and Ripple’s University Blockchain Research Initiative is gratefully ac-
knowledged.



The Right to be let alone is, in essence, a right to conceal information about oneself, i.e.
a notion of control over information and how it is shared with others. Once information is
shared, the recipient can process the information in any way they see fit, including sharing it
with a third party. This is precisely why the right to be let alone is a limited control right only,
as a more general right would include the ability to restrict how a recipient processes the infor-
mation. Furthermore, information about oneself is only a small subsection of the information
a person is involved in creating and a more general right would include the ability to control
what information is shared with others.

Obvious questions about attribution—who should have control over information that is
not about oneself—arise, exacerbated by the fact that data is relational and subject to externali-
ties [7]. More broadly, the question is who should control data. Even when it comes to personal
information, like the name of your spouse, the answer is only seemingly clear. But sharing this
information with anyone reveals the marital status not just of yourself, but also of your spouse,
infringing on your spouse’ ability to control this information.

In the privacy as secrecy view, privacy is violated by the disclosure of information. Accord-
ing to Richard Posner, “The other privacy interest, concealment of information, is invaded when-
ever private information is obtained against the wishes of the person to whom the information
pertains” [4]. There are two problems with this view, both related to control over information.
First, obtaining information, e.g. by intercepting communication and storing the intercepted
information, says nothing about how the information is used once it is obtained. This idea im-
plicitly assumes that we cannot control how the recipient of information will react to it, which
might be true in the context of a human learning the information–we cannot restrict how the
brain processes it–but is not true in the context of a machine receiving information. The sec-
ond problem is that the privacy as secrecy view assumes that information, once shared, can be
shared further, i.e. that it is non-rival. This can be seen in the argument by Kenneth L. Karst [8],
summarized in Solove [1] as “sometimes people do not want complete secrecy; rather, they desire
confidentiality, which consists of sharing the information with a select group of trusted people.”
But it is not a foregone conclusion that data is non-rival.

An alternative formulation to [8] could read: “people do not want complete secrecy; rather,
they desire control, which consists of allowing a select group of people to use the information in a
specific way.”

Understanding privacy, and specifically digital privacy, in the context of a desire to control
what happens with information, is closely aligned with the privacy-as-control over personal in-
formation view going back to Westin’s original 1967 work [5], where he defines privacy as “the
claim of individuals, groups, or institutions to determine for themselves when, how, and to what
extent information about them is communicated to others.” Westin’s focus on how information
is communicated to others is warranted because his interest is in privacy, or rather in the harm
a person suffers when their privacy is violated. In this regard, Solove adopts Westin’s notion
of information when he writes that “Information can be easily transmitted and, once known by
others, cannot be eradicated from their minds” [1]. The underlying assumption is that infor-
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mation is communicated and processed by humans, where “what is once thought, cannot be
taken back”1 However, the same is in no way true about information that is communicated,
processed, and stored by computers.

In Westin’s view, control over information is an expression of ownership: “personal infor-
mation, thought of as the right of decision over one’s private personality, should be defined as a
property right” [5]. We adopt a notion of ownership as control over a bundle of rights in the sense
of Demsetz [9]. Taken together, this leads to the following definition:

Definition 1. Information ownership is the control over a bundle of rights attached to an infor-
mation.

Since data is the physical embodiment of information, this definition also naturally trans-
lates to data ownership.

The above definition of information ownership is protected from the critique of Westin’s
and Solove’s implicit assumption that creator of an information cannot control how a third party
processes and uses this information, should it be communicated to them. Rather, each right
contained in the bundle can be spelled out explicitly, for example by specifying a piece of code
that is allowed to process the information.

However, Definition 1.1 does not address the relational nature of data. To this end, con-
sider an alternative definition where users jointly control the bundle of rights:

Definition 2. Information co-ownership is the joint control over a bundle of rights attached to
an information.

The definition says nothing about how joint control is organized. Consequently, any sys-
tem that allows users to own their data must provide a governance system within which joint
control can be organized. With all of the above, we are now able to define digital privacy for the
purpose of this paper:

Definition 3. Digital privacy is a user’s control over information they created.

1.2 Digital Rights

Before outlining an information infrastructure that respects users’ digital privacy in the next
section, it is useful to specify how “rights attached to an information” can be encoded.

To this end, consider the rights granted to the creator of an information in a specific set-
ting: when storing information in a file on a computer with a Unix-based operating system [13].

1From Friedrich Dürenmatt in Die Physiker (Physicists). In German: “Was einmal gedacht wurde, kann nicht
mehr zurückgenommen werden.”
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Initially, Unix provided three file rights, read, write, and execute, to three types of users, the file’s
owner, members of the owner’s group, and all other users. Assuming that user 1 created a file
the Unix information infrastructure implies rights of the form:

user1 :: r1w1x1

user2 :: r1w1x1
...

...
...

userN :: rN wN xN ,

where ri ∈ {r,−}, and similarly for w and x. In other words, each user i either has or has not the
right to read, write or execute a file, i.e. only up to three rights. Consequently, each user only
has a very limited bundle of rights and only limited options to control these rights (e.g. transfer
them to another user). On Unix, the operating system itself provides some protection for users’
rights, with the exception of root, who can always override the file permissions set by the file’s
owner.2 While a discussion about the legal status and nature of digital rights is beyond the scope
of this paper, our goal is to create an information infrastructure that recognizes digital rights
as inalienable rights. The Universal Declaration of Human Rights [14] recognizes privacy as a
human right in Article 12: “No one shall be subjected to arbitrary interference with his privacy,
family, home or correspondence [. . .]” and the right to private property in Article 17: “1. Everyone
has the right to own property alone as well as in association with others. 2. No one shall be
arbitrarily deprived of his property.”

If taken seriously, this implies two criteria that an information infrastructure should sat-
isfy: First, the owner or group of owners of an information must be able to define which digital
rights they hold. As a consequence, they must also be able to decide which rights to grant to
others. And second, the owner or group of owners of an information must not be deprived
of their rights. To satisfy the first criterion, consider an information infrastructure that allows
rights of the type

user1 :: r 1
1 . . .r K

1

user2 :: r 1
1 . . .r K

1
...

...
...

userN :: r 1
N . . .r K

N ,

where K is the total number of rights implemented by the infrastructure.

Because the number of possible rights is very large, we have decided to represent a right as
a Digital Rights Token (DRT). A DRT is defined by a unique name, a short description, a unique
data pool address to which the DRT refers, and a unique reference to a piece of code which
implements the right. DRTs also include the token supply, and the unique address of a smart

2Various cryptographic approaches exist to provide users with a basic notion of digital privacy, the simplest of
which is for the user to encrypt their data before storing it.
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contract that manages the tokens. Specifically, the smart contract manages the issuance and
ownership of tokens and their distribution in the primary market, as well as their redemption.
Details of what is included in a DRT can be found in Appendix A.1.

1.3 Applications

Our system is applicable whenever users have private data to which they want to provide access
to third parties for ex-ante agreed upon computations (and only those). The ability to ensure
that only authorized code is executed is tightly linked to guaranteeing privacy. In fact, the prob-
lem of privacy is almost trivial one to solve once data owners can be sure that only authorized
code is executed by the hosts without revealing their secret. The most obvious application of a
system as described above is the medical sector. Other use cases can be found in cybersecurity
and military applications, as well as in the financial sector.

1.3.1 Medical applications

The popularity of blockchain technology has brought forth multiple projects that want to cre-
ate a distributed collection of medical records for each individual that can be accessed from
everywhere, e.g. Medicalchain or Doc.ai. Since medical data is highly sensitive, it needs to be
encrypted, at least on the personal level if not even more broadly. Due to the inefficiency of cur-
rent approaches to compute over encrypted data, this procedures leaves millions of data points
useless for not only medical research, but also for data driven diagnostics.

Using the protocol as described above, physicians can create data that they sign over to
their patients, to utilize efficiently in data marketplaces. However, with the patients’ permis-
sion (or if required by law), they are still able to analyze this data by being allowed access. The
patients could also set it up such that their treating physician can access the data for free, while
researchers, other physicians, and especially insurance companies are required to pay for ac-
cess.

The system will foster medical research and can lead to fast advancements due to its pos-
sibility to compute over highly accurate and granular data. The viability of the code needs to be
given to ensure the accuracy of research results that could otherwise lead to harmful conclu-
sions.

1.3.2 Cybersecurity and military applications

Not only security-concerned institutions like the military or the intelligence agencies, but also
government facilities need to make sure the software they run behaves as expected and does
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not enable security breaches or contain malicious fragments. A code registry which ensures
that only approved code is run on data, as proposed in our framework, allows these agencies to
better control the code they run on their servers, in particular for cloud applications.

In 2017, President Obama expanded the National Security Agency’s ability to share data
with other agencies.3 Raw data can now be accessed by 16 American intelligence groups, raising
concerns of privacy advocates. Our system would pave the way for these governmental agencies
to cooperate without decreasing their citizens’ privacy. This cooperation could even be far more
reaching than including just 16 intelligence groups, including national and state police, since
no raw data but only computation results are shared. Our system can therefore fundamentally
improve national security.

1.3.3 Applications in finance

Privacy is a particularly sensitive issue in the financial services industry. Not only are regulations
particularly strict in this sector, but the very nature of financial intermediation is tied to the
existence of private information. Three examples are pertinent for our purposes.

First, modern banks consist of sometimes hundreds of subsidiaries that need to coordi-
nate their activities. Using public or even permissioned blockchains is only possible for a small
subset of the activities subsidiaries have to carry out. For example, large bank holding compa-
nies manage their liquidity within the banking group and consolidate it before accessing the
interbank market typically through a single designated subsidiary. If a bank’s liquidity position
was public knowledge (e.g. because transactions are recorded on a public blockchain), other
banks would see when a bank has liquidity needs, which would fundamentally shift bargaining
power and make access to liquidity more costly.

Second, credit bureaus collect creditor information from a large number of financial in-
termediaries, consolidate and clean it, and then make it available to other market participants.
This data sharing is necessary for banks to have the full credit history of individuals or compa-
nies applying for new loans. Without this data, credit provision would be massively impaired
due to asymmetric information, with substantially negative consequences for the real econ-
omy,.

Finally, supervisors mandated with maintaining financial stability crucially depend on the
availability of accurate and up to date information for all regulated entities. This is one of the
key lessons of the global financial crisis of 2007/2008 and the post-crisis regulatory framework
mandates not only macroprudential oversight and supervision in the national context, but also
internationally. This requires extensive data sharing agreements between different national and
international regulators. Existing centralized data storage solutions provide only imperfect se-
curity, are costly to maintain, and have only limited functionality.

3See e.g. TechCrunch, accessed on 2017-01-13.
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In all the cases mentioned above, the system outlined in this paper can provide significant
efficiency gains.

1.3.4 Other applications

The current business model on the web is centered around user data. Even though our system
returns data ownership to the user, it does not mean that services which are right now provided
by siren servers will disappear. Talented machine learning engineers will register their learning
algorithms that can then be trained using individuals’ user data. These users may even decide to
contribute their data for free in exchange for a better service product. It is more likely, however,
that individual users are paid for the use of their data and that they use this income to pay for
services that are currently "free".

2 System Overview

How does an alternative information infrastructure that facilitates information co-ownership
look like? Hanseth and Monteiro identify six aspects of information infrastructures [10]. Infor-
mation infrastructures (i) have an enabling function; (ii) are shared by a collection of users and
user groups; (iii) are open; (iv) are socio-technical systems; (v) are connected and interrelated
ecologies of networks; (vi) develop through extending the installed base. Our goal is to outline
an alternative information infrastructure which satisfies these six aspects and enables users to
own information according to Definition 1.1. Because of this goal, our system is automatically
aligned with the first aspect of information infrastructures.

Our system consists of four major components, shown in Figure 1. First, we use two
trusted execution environments based on Intel’s Software Guard Extension [11]-[12]. The ex-
ecution enclave facilitates the execution of wasm binaries and provides critical measurements
to validate users data contributions in a secure execution environment. The Signing Enclave
allows users to delegate the signing of blockchain transactions from a user’s wallet in specific,
pre-defined circumstances. This is necessary in some of the user stories discussed in Section
2.2. These enclaves are managed by their associated services, the signing service and execu-
tion service, which are essentially acting as an API for their respective enclaves facilitating the
exchange of data between components. Second, the rights associated with a dataset, i.e. the
rights attached to an information, are represented by an Algorand Standard Asset and recorded
on the Algorand mainnet.4 For the purposes of a minimum viable product, Algorand possessed
a uniquely suitable combination of smart contract capabilities, low transaction fees and con-
figurable crypto assets. Third, to facilitate the interaction between the signing enclave and the

4The choice of blockchain is not paramount to our system design and we could have used other permissionless
blockchains providing smart contract capabilities with only minor implications for our system design.
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Figure 1: System’s diagram for an information infrastructure that facilitates information co-
ownership. A dashed line indicates that the components are logically related, even though they
are individually implemented. Arrows indicate communication between components.

blockchain, we use a set of oracle nodes. These nodes have two functions: query the state of
the blockchain and pass the result to the execution enclave, and create unsigned transactions
from data received from the execution enclave to then be signed by the signing enclave and
later forwarded to the blockchain. Fourth, the orchestration between the other three compo-
nents is done via three microservices, the data service, signing service, and execution service.
In addition to these four components, we also use a blob storage database, hosted on Microsoft
Azure and all user interactions are facilitated by a Vault App.5

5Our source code is published under the GNU GPL v3 and available on github.
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2.1 Threat Model and Limitations

Whoever controls the infrastructure providing the microservices that connect the other system
components could, in principle, replace an existing service with a malicious version without
users noticing. Consequently, user data must be encrypted with a key shared between the en-
clave and the user while it is processed by the service layer. In addition, data at rest is encrypted
with the private key of the enclave. This ensures that only the enclave can process the raw user
data within the protected environment, shielded from e.g. the enclave provider and database
operator.

Open source code is used to create reproducible wasm binaries which are then sent to the
execution enclave where the code is executed on the raw user data. Users can verify which code
is being executed on their data using attestation. Our execution enclave uses a set of oracle
nodes to retrieve the state of the blockchain. Once a user redeems a digital rights token by
sending it to the smart contract associated with the data pool, the transaction is registered by
the oracle nodes and passed to the execution enclave to be verified, which upon successful
verification, triggers the execution of the binary code associated with the DRT.

Using a blockchain to record DRTs prevents the copying of authentic DRTs by a malicious
third party, which would undermine a user’s control over their data; While initially, there is a
single oracle node, this can easily be adapted to include multiple oracle nodes and the require-
ment that k out of n total nodes agree on the state of the blockchain;

The remaining challenge to provide users with control over their data is to prove to users
that only approved code is executed on their data. This is done via attestation, provided by the
trusted execution environment.6. In a first step, our platform only allows the execution of open
source code so that users are able to verify that a given wasm binary has been created with a
specific piece of code using reproducible builds.

The goal of our platform is not to provide privacy, but control. When a third party executes
code on user data, the result of this analysis is reported back to the third party. In that sense,
users cede some privacy, since they allow the extraction of information from their underlying
data. Crucially, though, our platform allows users to determine exactly how much privacy they
want to cede and to whom.

There are various threats to user’s control over their information with our information in-
frastructure. Notably, an extensive literature exists documenting potential attacks on Intel SGX
(see, e.g., [15, 16, 17]). Since our current implementation only allows reference to open source
code, users can detect whether the code they allow to be executed over their data includes one
of the known attacks. However, users could also consent to the execution of malicious code
without their knowledge of the malicious effects. This will remain a persistent threat.

6Eventually, we will provide a DCAP attestation library to facilitate user attestation queries.
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2.2 User Stories

Before going into the exact sequence diagrams for the various user stories our platform caters
for, we first give a high-level description of these. The start of any user story is that a user regis-
ters on our platform and creates an Algorand wallet.7 The system caters for four types of users:
data creators, data contributors, code creators, and data analysts. Data creators are users who
create a new data pool, while data contributors join existing pools. Code creators provide the
code referenced in digital rights tokens and data analysts buy DRTs for redemption. Notably, it
is possible for a user to play several roles simultaneously, e.g. be a data and a code creator. In
principle, our system also caters for a fifth type of user: a trader who buys and sells DRTs for
profit.

Create data pool. A data pool consists of a data package and an associated smart contract
that manages the issuance, distribution, ownership and redemption of DRTs. The data package
includes the user data that is stored encrypted with the private key of the execution enclave and
a reference to the data schema used by the pool.

To create a new data pool, a registered user must follow four steps. First, she defines a
data schema for the pool according to an open standard understood by our platform. Second,
she selects the file containing one or multiple rows of data conforming to the schema. And
third, the data creator selects from a list of available digital rights. Each right is represented as
a DRT. They are assigned to the pool by calling the smart contract. Once this is done, data is
uploaded and the data pool is created. The user then receives a contributor token representing
their initial data contribution–which is a DRT in itself.

Join data pool. Users can join existing data pools. To do so, the user must first purchase
an AppendDRT either directly from the smart contract managing the data pool, or from an-
other user. Once the user has purchased an AppendDRT, they can transfer it back to the smart
contract managing the data pool. This step is necessary so the smart contract has proof that
the AppendDRT was sent by its new contributor. Fourth, once the smart contract has received
the AppendDRT, the user can start to upload the data. To do so, the user needs to upload data
that matches the pool’s data schema. Once the data is uploaded, the user receives a contributor
token for their contribution which is used to implement revenue sharing among data contrib-
utors.

Execute Digital Rights Tokens. Our system recognizes DRTs in four states: defined, created,
issued, and redeemed. All DRTs must first be defined before they can be created or issued. Data
creators can choose among pre-defined DRTs during the data pool creation or define a new
DRT according to their own specification. We do not impose any restrictions on the code that is
represented in a DRT as long as it is open source and can be compiled into a wasm binary in a
replicable build. Once the pool has been created, the selected DRTs are created as an Algorand
Standard Asset, as well as the associated smart contract. Users can browse created DRTs on our

7Later, we automate this process so that all users automatically have an Algorand wallet address.
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platform and decide to purchase these, either to trade them on or to redeem them. A DRT is
redeemed by sending it back to the issuing smart contract.

Users can purchase available DRTs from the smart contracts managing the data pools.
Each DRT makes reference to a specific code repository, which implements the data creators’
and -contributors’ control over their data. DRTs can be either traded or executed (redeemed).
DRTs are executed by sending them back to the smart contract managing the data pool. Once
this blockchain transaction is recognized by the oracle nodes, they will inform the execution
enclave which then pulls the referenced piece of code and uses its own private key to unseal the
pool data and execute the code. Once the code execution is completed, the result is encrypted
with the private key of the redeeming user for future use.8

Claim royalties If an analyst purchases a DRT for the data pool, the smart contract man-
aging the pool receives these funds and allocates them internally to all data contributors in
proportion to their contribution to the overall pool. By holding a contributor token to the smart
contract, users can claim royalties accrued for their contribution so far; Upon instruction to
claim royalties from the user, the smart contract detects the ownership of the contributor to-
ken and distributes the royalties. Royalties can be claimed as often as the user wants, although
blockchain transaction fees must be paid by the user to do so.

3 Sequence Diagrams

In our sample implementation, we use the Algorand blockchain as distributed ledger for the
recording of Digital Rights Tokens. When a user creates a data pool, the system also instantiates
a corresponding smart contract to handle the creation, issuance, and execution of digital rights
tokens. This section details the sequence diagrams that implement the user stories our platform
caters for, summarized in the previous section. The sequence diagrams are shown in Figures 3–
6 in Appendix A.2.

3.1 Create Data Pool

The first important functionality provided by our information infrastructure is for a user to cre-
ate a new data pool. There are seven steps in this process, shown in Figure 3. Before the process
starts, the user logs in to the frontend [1–1.6] and establishes a secure communication channel
with the signing and execution enclaves by initiating a Diffie-Hellman key exchange and by re-
questing an attestation from the signing and execution enclaves. These requests are managed
by the signing and execution services which both return their attestation reports, enclave public

8Other integrations are possible, e.g. with Power BI or simply writing the data to a virtual file system so that the
user can integrate it in their own data processing pipelines.
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keys, and the shared secrets.

Then, in step one [2–6], the user starts the create data pool flow and selects a data file
and a data schema file. These are uploaded and the system verifies that data file and schema
are consistent. The user then enters a description for the pool and selects which Digital Rights
Tokens to issue.

In step two [7–10], the system creates a deploy smart contract transaction on the Algo-
rand blockchain. The transaction signing process [8.1–8.6] is used several times, so it makes
sense to explain it in some detail. To sign a transaction, the user requests the public key of the
signing enclave and a shared secret, and encrypts the transaction details using this. The en-
crypted transaction is then sent to the signing service which in turn sends it to the signing en-
clave. The signing enclave then uses its key to decrypt the transaction, then sign it by accessing
the signing key of the user’s Algorand wallet which is accessed by the enclave, and re-encrypt
the now-signed transaction with the remote attestation encryption key. With this, the trans-
action signing process ends. The reason for signing the transaction within the enclave rather
than directly by the user is so that users are able to delegate signing transactions. The signed
transaction is then sent back to the frontend from where it is issued to the blockchain using the
Algorand SDK, which returns the application ID.

Step three [11–13], using the application ID, the frontend creates a payment transaction
to fund the smart contract. This is necessary because the smart contract requires a minimal
balance to conduct the necessary operations of a data pool. The transaction is signed by the
signing enclave and issued to the blockchain using the transaction signing process.

Once this is done, in step four, the frontend requests the remote attestation encryption
key from the signing enclave and encrypts the data file once it receives the key. The frontend
then passes the encrypted data file and the transaction ID of the smart contract deployment to
the execution enclave via the execution service. The execution service triggers [16–17] the cre-
ation of a secure communication channel between the execution enclave and the oracle nodes.
The nodes request the enclave attestation and share their public key. The enclave returns the at-
testation report encrypted with the oracle node’s public key. Next, the execution service passes
the encrypted data and transaction ID to the execution enclave, which decrypts it using the
oracle node’s public key and a shared secret. The execution enclave then [21] passes the en-
crypted transaction ID to verify to the oracle nodes via the execution service. The oracle nodes
decrypt the transaction ID and query the state of the blockchain for this transaction ID. They
encrypt the result with the execution enclave’s key and return it to the execution enclave via the
execution service [26].

In step five, the execution enclave decrypts the oracle node data and validates that the
smart contract has been deployed and that there is enough funds to meet the minimal balance
required. This is done via Byzantine fault tolerance, requiring that K out of N nodes report the
same state of the blockchain. Upon successful validation, the data is decrypted. The execu-
tion enclave then counts the rows of data and computes the hash of the sealed data set. The
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execution enclave then counts the rows of data and computes the hash of the sealed data set.
Next, the execution enclave parses the oracle node data and gathers the transaction details that
would later initialize the smart contract [28–29].

Step six, the execution enclave passes the sealed data to the data service [30], which stores
it. It also sends the unsigned transaction data to the oracle nodes which decrypt it and construct
the unsigned transaction to initialize the smart contract. This is done via the oracle nodes to
prevent a central entity from blocking the smart contract creation and thereby infringing on
a user’s digital rights. The oracle nodes establish a secure communication channel with the
signing enclave [34–35] and encrypt the transaction data with its public key and send it via
the signing service to the signing enclave. The signing enclave in turn decrypts the unsigned
transaction data, performs the same K out of N Byzantine fault tolerance as before to establish
the true state of the blockchain. It then signs the transaction using the wallet key and passes it
to the oracle nodes who deploy the smart contract to the blockchain [43].

Initialization of the smart contract includes creating the unique Append DRT for the data
pool, the contributor token representing the initial contribution of the pool, and adding the
hash of the first data. In the transaction response from the blockchain, the frontend parses and
stores the contributor token ID and append DRT ID [44–46].

In step seven, the frontend uses the ID of the contributor token and Append DRT, which it
received in step six and then creates an optin transaction to the contributor token. This trans-
action is signed by the signing enclave using the transaction signing process [48.1–48.6] similar
to step two, and issued from the frontend to the blockchain [49]. The smart contract registers
the ownership of the contributor token and transfers the contributor token to the user’s wallet.
The frontend then passes the information of the contributor token to the data service which
stores it in blob storage as the last step of the process [55].

3.2 Join Data Pool

The second important functionality is for a user to be able to join an existing data pool. This is
also the most complicated functionality because we require that both the pool’s existing data as
well as the user’s new data remain encrypted in transit and at rest.

There are ten steps. Step one [1–1.6], the user logs in and the Frontend establishes a se-
cure communication channel with the execution enclave and requests the Enclave’s attestation.
Once this is returned, the Frontend queries the data pools from the data service and receives
them. The user then selects a data pool to join from a list of available data pools [5]. Next, the
user selects data to upload [6] and the platform then verifies the schema [7] to confirm that the
new data complies with the schema of the data pool. The data is then uploaded, encrypted with
a secret shared between the user and the execution enclave [8].

Step two, the user first must optin to the AppendDRT [9–10] because it is an Algorand Stan-
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dard Asset in our reference implementation. This is done via the transaction signing process
[8.1–8.6 of the Create Data Pool sequence diagram]. The signed transaction is returned to the
Frontend from where it is finally sent to the blockchain.

Step three, the user buys an AppendDRT in an atomic transfer [11–13], implemented as
a group transaction on Algorand.9 An atomic transfer is a way to solve the escrow problem.
The user sends the payment for the AppendDRT to the smart contract managing the pool, and
receives the DRT in return. Importantly, either both transactions are successful or neither, re-
moving any counterparty risk. The group buy transaction process is also done via the transac-
tion signing process as before. This step ends with the Frontend issuing the group transaction
to the blockchain.

Step four, once the AppendDRT has been transferred to the user, a second group transac-
tion takes place [14–16]. First, The user transfers the AppendDRT back to the smart contract.
This step is necessary to ensure that the smart contract keeps an up-to-date list of all contrib-
utors for royalty disbursement later. The sending address uniquely identifies the contributor.
Second, the user must send a fee for executing the append operation to the smart contract.
This fee is fixed in our reference implementation and covers infrastructure costs. And third, the
user sends an application call transaction to the smart contract to request being added as data
contributor. This group transaction is also signed via the transaction signing process as before.
Once the group transaction has been submitted to the blockchain, the smart contract adds the
user as a pending contributor and returns the transaction ID to the frontend [17].

Step five, the user retrieves the execution enclave’s public key and secret key and encrypts
their raw data and the transaction ID [18]. The new encrypted data is then passed to the execu-
tion service which issues a request for the current sealed pool data to the data service. Once the
execution service receives the current sealed pool data [21], it passes the transaction ID to the
execution enclave to commence verification of the transaction. Before this, a secure communi-
cation channel is established between the oracle nodes and execution enclave [22-23].

Step six [25–28], the execution enclave requests a verification of the transaction ID from
the oracle node via the execution service. The oracle nodes decrypt the transaction ID with
the shared secret between the exeuction enclave and the oracle node[29] and queries the state
of the blockchain for this transaction ID [30-31]. The oracle nodes then encrypts the transac-
tion information with the execution enclave’s public key and shared secret key and returns the
encrypted oracle node data to the execution service. The execution service then passes the en-
crypted oracle node data, the encrypted frontend data and the current sealed pool data to the
execution enclave [32–34]. The execution enclave then decrypts and verifies the oracle node
data, requiring that K out of N oracle nodes are in agreement about the state of the blockchain
[35].

Step seven. In this crucial step, the execution enclave then unseals the pool data and the

9For details on group transactions on Algorand, see here.
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newly submitted data. It then merges the two data sets and counts the rows in the user’s data set.
It then seals the joint dataset, computes the hash of the new dataset and parses the transaction
details from the oracle nodes [36]. Then, the execution enclave encrypts the number of rows
contributed, the new hash, and the unsigned transaction details with the shared secret of the
oracle nodes [37]. Next, the execution enclave passes the sealed data to the data service and the
unsigned transaction data to the oracle node, both via the execution service. The data service
stores the sealed data [39–40] and the oracle nodes decrypt the transaction data and constructs
an unsigned transaction to approve the data contributor [41–43].

In step eight, the oracle nodes establish a secure communication channel with the sign-
ing enclave by requesting the enclave’s attestation and retrieving its public key [44–45]. With
this, the oracle nodes encrypt the data with the signing enclave’s public key and a secret key.
Then, they pass the encrypted unsigned transactions to the signing enclave via the signing ser-
vice [47–48] which decrypts the unsigned oracle transactions [49]. The signing enclave then
performs a K out of N verification of the transaction content from N oracle nodes, ensuring the
truthfulness of the transaction. The unsigned contributor approval transaction is then signed
with the secret key of the signing enclave. Then, the signed contributor approval transaction is
passed via the signing service to the oracle nodes [51-52] and from there to the blockchain.

Step nine, once the smart contract receives the approval transaction from the signing en-
clave to add a contributor [53], it creates a contributor token, which includes the reference to
the smart contract, representing the data contribution and registers the user’s ownership of the
token, and updates the hash of the pool data.

Step ten, to claim the contributor token, the user first must optin to it [57]. This is done
analogous to the optin to the AppendDRT in step two above. The user then issues a transaction
to claim the newly created contributor token [60] that sends an instruction to the smart contract
to transfer the contributor token to the user’s wallet [62-63]. Lastly, because rights represented
by a contributor token is public information, we can store this information in blob storage for
later ease of use [64–66].

3.3 Execute Digital Rights Tokens

This flow starts with a user who has already purchased a Digital Rights Token and wishes to
execute the code linked in the DRT on the issuing data pool. Step one, after logging in and
establishing a secure communication channel [1.1–1.6], the frontend queries a list of the user’s
DRTs directly from the blockchain and allows the user to select which DRT to execute [2–6].

Step two, the frontend initializes an execute DRT group transaction [7], consisting of: i)
The DRT asset transfer transaction; ii) The payment transaction of the code execution fee (a flat
fee initially, later it can depend on the actual runtime of the code); and (iii) An application call
transaction to execute the DRT.
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In step three, the execute DRT group transaction is signed using the same transaction
signing process as before ([8.1–8.6] in the Create Data Pool use case). The signed transaction
is issued to the blockchain by the frontend [8], which receives the transaction ID of the group
transaction in return [9].

Next, in step four, the frontend obtains the public key of the execution enclave and uses
this key to encrypt the transaction ID received in step three.

Step five, the frontend sends the encrypted transaction ID to the execution service, which
passes it to the execution enclave to commence verification of the transaction. Before this, a
secure communication channel is established between the oracle nodes and execution enclave
[12-13]. The verification process of the transaction ID is performed as explained in Step 6 of the
Join Data Pool Sequence diagram [14–25].

Step six, once the execution enclave can be sure of the transaction ID of the execute DRT
group transaction, it parses the oracle node and triggers the execution service to request the
sealed dataset of the data pool that issued the DRT, and the wasm binary referenced in the
DRT [25-26]. The execution service fetches the wasm binary code from the referenced public
repository. Because we use replicable builds, data creators can easily verify what code exactly
is included in the wasm binary, which in turn is what guarantees their control over their data.
Once the execution service receives the sealed data and the wasm binary, it passes both to the
execution enclave [29].

Step seven, the execution enclave unseals the data using the enclave’s sealing key and
executes the wasm binary on this data [30]. It then seals and stores the data again and encrypts
the result of the computation using the secret shared between the execution enclave and the
frontend.

In step eight, the execution enclave passes the sealed and encrypted result and sealed data
to the execution service [31], which then sends both to the data service which in turn stores the
sealed data and the sealed and encrypted result of the computation [32–33]. Lastly, the data
service sends the encrypted result to the frontend [34] where it is decrypted and displayed to
the user, who can also download it [35–37].

3.4 Create Digital Rights Tokens

Lastly, we turn to the creation of a Digital Rights Token, before discussing the issuance and
trading of DRTs. Figure 6 shows how to create a DRT. To do this, a data creator selects a data
pool from the list of pools they have created in step one [2-3]. Then, the user selects which code
is referenced in the DRT from a list of available wasm binaries [4]. Next, the user enters a short
description of the DRT [5].

In step two, the users creates the Create DRT transaction by following the sign transaction
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process [8.1–8.6 of the Create Data Pool sequence diagram] Once the user receives the signed
Create DRT transaction from the signing enclave, the frontend issues it to the blockchain [8].
This instructs the smart contract, representing the data pool, to create an Algorand Standard
Asset that represents the DRT [9]. The newly created Asset ID is then returned to the frontend
[10]. In step three, the user issues a instruction to the smart contract to store the DRT in in
the Algorand Box Storage of the smart contract with this transaction following again the sign
transaction process from before [11]. Once the user receives the signed transaction, it is sent
to the blockchain by the frontend where the DRT is registered in the box storage [13-14]. Since
DRTs are traded on a blockchain, there is a continuous record of ownership, this ownership is
recorded in the box storage of the smart contract. This provides a convenient way to obtain
information about the current owner of a DRT without having to query the blockchain.

A Appendix

A.1 Digital Rights Tokens

Below is sample code for the AppendDRT which allows other users to append their information
to the data pool managed by the smart contract with address KAHE4HQEWEUDEUTUBSVU5E2VHMBC
BGEY46X7TGJ2EE7V4DCEYDUCLWCCA4. Each DRT includes a link to a URL where the code for the
DRT can be pulled from.
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Figure 2: Sample code for the AppendDRT.

{
"index":239815614,
"params":

{
"creator":"KAHE4...",
"decimals":0,
"default-frozen":false,
"manager":"KAHE4...WCCA4",
"metadata-hash":"QUFBQ...",
"name":"Append",
"name-b64":"QXBwZW5k",
"reserve": "KAHE4...WCCA4",
"total":15,
"unit-name":"DRT",
"unit-name-b64":"RFJU",
"url":"https://github.com/ntls-io/ntc/append",
"url-b64":"aHR0cHM6..."
}

}
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A.2 Sequence Diagrams

Figure 3: Sequence diagram for the Create Data Pool user story. Each lane indicates a system
component, each arrow a communication between two components.
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Figure 4: Sequence diagram for the Join Data Pool user story. Each lane indicates a system
component, each arrow a communication between two components.
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Figure 5: Sequence diagram for the Execute DRT user story. Each lane indicates a system com-
ponent, each arrow a communication between two components.
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Figure 6: Sequence diagram for the Create DRT user story. Each lane indicates a system com-
ponent, each arrow a communication between two components.
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