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Abstract

This paper proposes a dynamic multi-agent model of a banking system with

central bank. Banks optimize a portfolio of risky investments and riskless ex-

cess reserves according to their risk, return, and liquidity preferences. They

are linked via interbank loans and face stochastic deposit supply. Compar-

ing different interbank network structures, it is shown that money-center

networks are more stable than random networks. Evidence is provided that

the central bank stabilizes interbank markets in the short run only. Systemic

risk via contagion is compared with common shocks and it is shown that

both forms of systemic risk require different optimal policy responses.
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1. Introduction

The recent financial crisis has shown that systemic risk takes many forms and

is highly dynamic. It builds up slowly in normal times, and unwinds rapidly

during times of distress. The insolvency of the US investment bank Lehman

Brothers in September 2008 marked the tipping point between the build-up

and rapid unwinding of systemic risks and led to a freeze in interbank mar-
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kets. Banks were no longer able to obtain liquidity and engaged in costly fire

sales. Central banks were forced to undertake unprecedented non-standard

measures to ensure liquidity provision within the banking system.

This paper analyzes the non-trivial network structure of the bilateral inter-

bank loans which form the money market. Interbank networks exhibit what

Haldane (2009) describes as a knife-edge, or robust-yet-fragile property: in

normal times the connections between banks lead to an enhanced liquidity

allocation and increased risk sharing.1 In times of crisis, however, the same

interconnections can amplify initial shocks such as the insolvency of a large

and highly interconnected bank.2 This implies that there are two different

regimes of financial stability: a stable regime in which initial shocks are

contained, and a fragile regime in which initial shocks are transmitted via

interbank linkages to a substantial part of the financial system. The knife-

edge property of interbank markets can be attributed to a counterparty risk

externality which is characteristic of over-the-counter markets (e.g. Acharya

and Bisin (2010)). When a bank lends to a number of other banks it is obliv-

ious to any links between those banks and might underestimate its portfolio

correlation. A similar effect can be termed correlation externality and arises

when a bank is oblivious to the asset holdings of other banks. The coun-

1See for example Allen and Gale (2000) (or Freixas et al. (2000) for a similar setting)

who show that highly interconnected banking systems are less prone to bank-runs.
2The fragility of an interconnected financial system was analyzed by Gai and Kapadia

(2010), who show that the risk of systemic crises is reduced with increasing connectivity on

the interbank market. At the same time, however, the magnitude of such a crisis increases.
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terparty risk externality can lead to interbank contagion (sometimes called

cascading defaults), while the correlation externality can lead to common

shocks.3

This poses the question of whether there exist network structures that are

less prone to systemic risk (caused by either externality) and hence more re-

silient to financial distress. The massive intervention of central banks at the

height of the financial crisis furthermore raises the question of whether cen-

tral bank interventions can effectively stabilize interbank markets and ensure

banks’ liquitiy provision. Finally, in order to understand systemic financial

fragility, it is necessary to compare the instabilities caused by the counter-

party risk externality with instabilities caused by the correlation externality

(i.e. to compare the effects of interbank contagion to the effects of common

shocks).

This paper addresses the aforementioned questions by developing a simple

dynamic model of a banking system that explicitly incorporates an evolving

interbank network structure. Banks optimize a portfolio of risky investments

and riskless excess reserves. Risky investments are long-term investment

projects that fund an unmodelled firm sector while riskless excess reserves

are short-term and held at the deposit facility of the central bank.4 Banks

face a stochastic supply of household deposits and stochastic returns from

3A common shock can affect banks who have become overly correlated as a consequence

of a correlation externality.
4Alternatively, excess reserves could be held in form of highly liquid T-bills.
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risky investments. This gives rise to liquidity fluctuations and initiates the

dynamic formation of an interbank loan network. Banks, furthermore, have

access to central bank liquidity if they can provide sufficient collateral.

Three key results are obtained. First, this model is used to compare differ-

ent possible interbank network structures, and it is shown that in random

graphs the relationship between the degree of interconnectivity and financial

(in-)stability is non-monotonic. In times of distress, money center networks

(which are typically found in reality) are seen to be more stable than purely

random networks. In tranquil times, however, I show that different inter-

bank network structures do not have a substantial effect on financial stabil-

ity. The key intuition behind this behaviour is a regime switching property

of the model financial system. In tranquil times, liquidity demand-driven

interbank lending is low and cascading defaults are thus contained. In times

of crisis, individual banks suffer larger liquidity fluctuations and engage in

higher liquidity-driven interbank lending. This drives the financial system

as a whole into a contagious regime. When exactly the regime switching be-

haviour occurs depends on the interbank network structure.

Second, I show that the central bank can stabilize the financial system in

the short run. In the long run, however, the system always converges to a

steady state which depends, amongst other things, on the interbank network

structure. Central bank liquidity provision helps banks to withstand liquidity

shocks for a longer time. This, however, allows banks that would otherwise

be insolvent to engage in liquidity demand-driven interbank borrowing. The
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result is that the financial system as a whole is more highly interconnected

and more likely to enter the contagious regime.

Third, I show that the introduction of a common shock hitting all banks

simultaneously can cause substantial financial fragility but has a less severe

impact on the liquidity provision of the interbank market. This finding is of

particular importance for policymakers implementing emergency measures in

times of a crisis: while interbank contagion requires mainly liquidity provi-

sion, a common shock requires banks to be recapitalized.

The remainder of this paper is organized as follows. After this introduction,

section two outlines the contribution to the literature. Section three de-

scribes the dynamic model that has been used to analyze the aforementioned

questions. Section four will present the main results, section five provides a

discussion of further model implications, while sextion six concludes.

2. Relation to the Literature

The literature on financial networks has been growing rapidly over the past

few years.5 As a result, this paper relates to various strands of literature.

First, it relates to a class of network models using static network structures

and fixed balance sheets. In contrast to this literature the present paper

models banks that optimize their balance sheet structure in every period and

continuously adapt the interbank network structure. Closest to the present

5An overview of the existing literature can be found, for example, in Allen et al. (2010).
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paper are the works by Iori et al. (2006) and Nier et al. (2008). In the model

of Iori et al. (2006) banks’ balance sheets consist of risk-free investments and

interbank loans as assets, with deposits, equity and interbank borrowings as

liabilities. Banks receive liquidity shocks via deposit fluctuations and pay

dividends if possible. Nier et al. (2008) describe the banking system as a

random graph where the network structure is determined by the number of

banks and the probability that two nodes are connected. The banks’ bal-

ance sheet consists of external assets investments and interbank assets on

the asset side and net worth, deposits, and interbank loans as liabilities. Net

worth is assumed to be a fixed fraction of a bank’s total assets and deposits

are a residual, designed to complete the bank’s liabilities side. Idiosyncratic

shocks that lead to a bank’s default are distributed equally within the in-

terbank market. Both papers assume a risk-free investment opportunity and

Nier et al. (2008) further assume deposits to be residual. By contrast, I ex-

plicitly allow the possibility of risky investments and deposit fluctuations.

In a recent paper, Bluhm et al. (2012) develop an intertemporal agent-based

model of banks with a dynamic interbank network. While Bluhm et al.

(2012) focus on the contribution of individual banks to overall systemic risk,

I analyze the impact of the interbank network structure on financial stability.

Ladley (2011) finds in a static network setting that for small shocks, high

interconnectivity helps to stabilize the system, while for large shocks high

interconnectivity amplifies the initial impact. Such a static approach has

been considered by a number of authors, including Gai and Kapadia (2010),

Battiston et al. (2012), and, earlier, Eisenberg and Noe (2001). In contrast to
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this literature, I consider a dynamic contagion model where banks optimize

their balance sheet structure and as a result the actual interbank network

structure.

Second, this paper relates to the empirical literature on the topology of in-

terbank networks by conducting a dynamic analysis of interbank contagion

with general interbank network topologies. Such empirical analyses include

Bl̊avarg and Nimander (2002), Boss et al. (2004), van Lelyveld and Liedorp

(2006), Degryse and Nguyen (2007), and Becher et al. (2008). These papers

show that interbank networks often exhibit a scale-free topology, i.e. they

are characterized by a few money center banks with many interconnections

and a large number of small banks with few connections.

Third, this paper contributes to a vast literature on systemic risk. A large

part of the literature on systemic risk in interbank markets has focused on

the analysis of contagion effects (i.e. studying the counterparty risk external-

ity). Recently, more attention has been given to the correlation externality

and the analysis of common shocks as sources of systemic risk. Acharya and

Yorulmazer (2008), for example, point out how banks are incentivized to

increase the correlation between their investments, and thus the risk of an

endogenous common shock, in order to prevent costs arising from potential

information spillovers.

Fourth, in addition to the existing literature on interbank networks, this

paper introduces a central bank as a key player in the financial system. To
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motivate central bank interventions, Allen et al. (2009) and Freixas et al.

(2010) show that central bank intervention can increase the efficiency of

interbank markets. The present model investigates the effects of central

bank intervention on contagion and common shocks.

3. The Model

This section develops a dynamic model of a banking system that can be

used to analyze the impact of the interbank network structure on financial

stability. First, deposit fluctuations have to be included: (i) Because of the

maturity transformation that banks perform and since deposits usually have

a short maturity, deposit fluctuations can lead to illiquidity. Banks which

become illiquid have to liquidate their long-term investments at steep dis-

counts. Due to marked-to-market accounting, these steep discounts will lead

to losses in banks’ trading books and have to be compensated by banking

capital. Thus, illiquidity can lead to insolvency. (ii) As deposit fluctuations

are generally considered to be one of the reasons why banks engage in in-

terbank lending (see, for example, Allen and Gale (2000)), they have to be

included in all models of systemic risk. Without deposit flucutations as a

driving force behind the formation of interbank networks, it is impossible

to describe the counterparty risk externality in a dynamic setting. Second,

as fluctuations in investment returns have to be compensated by banking

capital, risky investments are a major cause of bank insolvencies. Without

risky investments, it is impossible to model the correlation externality as it

arises precisely in a situation when the returns on risky assets of a number

of banks have negative realizations at the same time. In order to model
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common shocks, risky investments thus have to be taken into account.

3.1. Balance Sheets

The balance sheet of a bank k holds risky investments Ik and riskless excess

reserves Ek as assets at every point in (simulation-) time t = 1 . . . τ . The

investments of bank k have a random maturity6 τ kI > 0 and I assume that

each bank finds enough investment opportunities according to its preferences.

The bank refinances this portfolio by deposits Dk (which are stochastic and

have a maturity of zero), from which it has to hold a certain fraction rDk of

required reserves at the central bank, fixed banking capital BCk (which is

assumed to be held in a highly liquid form), interbank loans Lk and central

bank loans LCk.7 Interbank loans and central bank loans are assumed to have

a maturity of τ kL = τ kLC = 0. The maturity mismatch between investments

and deposits is the standard maturity transformation of commercial banks.

Interbank loans can be positive (bank has excess liquidity) or negative (bank

has demand for liquidity), depending on the liquidity situation of the bank

at time t. The same holds for central bank loans, where the bank can use

either the main refinancing operations to obtain loans, or the deposit facility

to loan liquidity to the central bank. The balance sheet of the commercial

bank therefore reads as

Ikt + Ek
t = (1− r)Dk

t +BCk
t + Lkt + LCk

t (1)

6Maturity τ implies that the asset matures in τ + 1 update steps.
7Interbank loans expose a lending bank to counterparty risk. The results of this paper

could be translated to any setting with direct counterparty risk, including credit default

swaps. Other types of links include common asset holdings and have been addressed, for

example, by Arinaminpathy et al. (2012) and Wagner (2011).
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The interest rate for deposits at a bank is rd and the interest rate for central

bank loans is rb. Note that there is no distinction between an interest rate

for the lending and deposit facility and, therefore, the interest rate on the

interbank market will be equal to the interest rate for central bank loans.

The banks decide on their portfolio structure and portfolio volume. A con-

stant relative risk aversion (CRRA) utility function is assumed to model the

bank’s preferences:

uk =
1

1− θk

(
V k(1 + λkµk − 1

2
θk(λk)2(σk)2)

)(1−θk)

(2)

where λk is the fraction of the risky part of the portfolio.8 µk is the expected

return, (σk)2 the expected variance of the portfolio and θk is the banks risk

aversion parameter.9 V k
t = Ikt +Ek

t denotes the bank’s portfolio volume. The

risky part of the portfolio follows from utility maximisation and reads as

(λk)∗ = min

{
µk

θk(σ2)k
, 1

}
∈ [0, 1] (3)

The portfolio volume can be obtained by similar measures as

(V k)∗ =

[
1

rb

((
1 + λkµk − 1

2
θk(λk)2(σ2)k

)(1−θk)
)]1/θk

(4)

where rb denotes the refinancing cost of the portfolio. Since banks obtain

financing on the interbank market and from the central bank at the same

8This utility function can be scaled by a normalization parameter ξ which was taken

to be ξ = 1 for simplicity, as it does not change any of the obtained results.
9Banks’ risk aversion is drawn from a uniform distribution at the beginning of each

simulation and kept constant throughout the simulation. A possible extension is to allow

banks to adjust their risk aversion each period, based on current market conditions.

10



interest rate, this refinancing cost is equal to the main refinancing rate. It is

possible to introduce a spread between the lending and deposit facilities and

therefore allow the interest rate on the interbank market to vary stochas-

tically around the main refinancing rate. If a bank now plans its optimal

portfolio volume, it calculates with a planned refinancing rate. This refi-

nancing rate follows from the bank’s plan concerning how much in interbank

loans it wants to obtain on the interbank market at a planned refinancing

rate and how much in central bank loans it plans to obtain at the main refi-

nancing rate. If this plan cannot be realized (for example if a bank’s liquidity

demand is unsatisfied on the interbank market), banks make a non-optimal

portfolio choice. This possibility is ruled out for the sake of simplicity. Note

that a market for central bank money is not explicitely modelled. The cen-

tral bank instead accommodates all liquidity demands of commercial banks,

as long as they can provide the neccessary securities. This assumption is not

unrealistic in times of crises, as is shown, for example, by the full allotment

policy of the European Central Bank at the peak of the crisis.

3.2. Update Algorithm

In the simulation I have implemented an update algorithm that determines

how the system evolves from one state to another. The algorithm is divided

into three phases that are briefly described here. Every update step is done

for all banks for a given number of sweeps. At the beginning of phase 1 the

bank holds assets and has liabilities from the end of the previous period:

Ikt−1 + Ek
t−1 + rDk

t−1 = Dk
t−1 +BCk

t−1 + Lkt−1 + LCk
t−1 (5)
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Figure 1: Interaction dynamics of the model. The private sector (household/firms), the

banking sector (commercial banks) and the central bank interact via the exchange of

deposits, investments, loans, excess- and required reserves and central bank loans. Arrows

indicate the direction of fund flows.

where an underline denotes realized quantities. In period 0 all banks are

endowed with initial values. The update step starts with banks obtaining

the required reserves rDk
t−1 and excess reserves Ek

t−1 plus interest payment

from the central bank (it is assumed that, for both required and excess re-

serves, an interest of rb is paid). The banks obtain a stochastic return for

all investments Ikt−1 which might be either positive or negative. The firms

furthermore pay back all investments Ikf that were made in a previous period

and have a maturity of τ kI = 0. The banks then pay interest on all deposits

that were deposited in the previous period. After that, the banks can either
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receive further deposits from the households, or suffer deposit withdrawings

∆Dk
t . At the end of the first period, all interbank and central bank loans

plus interests are paid either to or by bank k.

At the beginning of phase 2, the bank’s liquidity Q̂k is therefore given as:

Q̂k
t = (1 + rb)

[
rDk

t−1 + Ek
t−1
]

+ µkIkt−1 + Ikf − rdDk
t−1 ±∆Dk

t (6)

−(1 + rb)
[
Lkt−1 + LCk

t−1
]

All banks with Q̂k
t < 0 are marked as illiquid and removed from the system.

Banks that pass the liquidity check now have to pay required reserves rDk
t

to the central bank.

In phase 3 the bank k determines its planned level of investment Ikt =

(λk)∗(V k)∗ and excess reserves Ek
t = (1− (λk)∗)(V k)∗ according to equations

(3) and (4). From this planned level and the current level of investments (all

investments that were done in earlier periods and have a maturity τ kI > 0),

as well as the current liquidity (6) the bank determines its liquidity demand

(or supply). If a bank has a liquidity demand, it will go first to the interbank

market, where it asks all banks i that are connected to k (denoted as i : k) in

a random order whether they have a liquidity surplus. If this is the case, the

two banks will interchange liquidity via an interbank loan. The convention

is adopted that a negative value of L denotes a demand for liquidity and

therefore the interbank loan demand of bank k is given by

Lkt = Q̂k
t − Ikt (7)

From this, the realized interbank loan level can be obtained via the simple
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rationing mechanism:

Lkt = min

L
k
t , −

∑
i:k L

i
t | Lit · Lkt < 0 ; if Lkt > 0

−Lkt ,
∑

i:k L
i
t | Lit · Lkt < 0 ; if Lkt < 0

 (8)

Now, there are three cases, depending on the bank’s liquidity situation. If a

bank has neither a liquidity demand nor excess liquidity, it will not interact

with the central bank and this step is omitted. However, if the bank still has

a liquidity demand, it will ask for a central bank loan:

LCk
t = Lkt − Lkt (9)

The central bank then checks whether the bank has the neccessary securities

and, if so, it will provide the loan:

LCk
t = max

(
LCk

t ,−αkIkt−1
)

(10)

where αk ∈ [0, 1] denotes the fraction of investments of bank k that are ac-

cepted as collateral by the central bank. If a bank has insufficient collateral,

the central bank will not provide the full liquidity demand and the bank has

to reduce the planned investment and excess reserve level. If the bank has

no securities (no investments Ikt−1), it cannot borrow from the central bank.

This rationing mechanism maps planned investment levels to realized ones.

The second case is that a bank has a large liquidity surplus even if all planned

investments can be realized. In this case, the bank is able to pay dividends

Akt and the dividend payment is determined by

Akt = min
{
LCk

t , β
kIkt
}

(11)
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where βk ∈ [0, 1] is the dividend level of bank k. The dividend level will typ-

ically be very close to 1 as shareholders will push the bank to pay dividends

rather than use the money to deposit it at the central bank at low interest

rates. The remaining:

LCk
t = LCk

t − Akt (12)

is transferred to the central bank’s deposit facility. Finally the realized in-

vestments are transferred to the firm sector and the realized excess reserves

are transferred to the central bank.

These steps are done for all k = 1 . . . N banks in the system for t = 1 . . . τ

time steps. As there are two stochastic elements in the simulation (the return

of investments and the deposit level), two channels for a banks insolvency are

modelled. The first channel is via large deposit withdrawals. As deposits are

very liquid and investments are illiquid for a fixed, but random investment

period, this maturity transformation might lead to illiquidity and therefore

to insolvency. The second channel for insolvency is via losses on investments.

If the banks banking capital is insufficient to cover losses from a failing in-

vestment, this bank will be insolvent. If a bank fails, all the banks that lent

to this bank will suffer losses, which they have to compensate with their own

banking capital. This is a possible contagion mechanism, where the insol-

vency of one bank leads to the insolvency of other banks which would have

survived if it had not been for the first bank’s insolvency. The impact of the

contagion effect will depend on the precise network structure of the interbank

market at the time of the insolvency.
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3.3. Network theory

A financial network consists of a set of banks (nodes) and a set of relationships

(edges) between the banks. Even though many relationships exist between

banks, this paper focuses on relationships that stem from interbank lending.

For the originating (lending) bank the loan will be on the asset side of its

balance sheet, while the receiving (borrowing) bank will hold the loan as a

liability. To describe the topology of a network, some notions from graph

theory are helpful. The starting point is the definition of a graph.

Definition 1. A (un)directed graph G(V,E) consists of a nonempty set V

of vertices and a set of (un)ordered pairs of vertices E called edges. If i and

j are vertices of G, then the pair ij is said to join i and j.

Graphs are sometimes referred to as networks and the two terms are used

interchangeably. Since the focus of this paper is on interbank markets, the

nodes of a network are (commercial) banks and the edges are interbank loans

between two banks. For every graph, a matrix of bilateral exposures describ-

ing the exposure of bank i to bank j can be constructed.

Definition 2. The matrix of bilateral exposures W (G) = [wij] of an inter-

bank market G with n banks is the n × n matrix whose entries wij denote

bank i’s exposure to bank j. The assets ai and liabilities li of bank i are given

by ai =
∑n

j=1wij and lj =
∑n

j=1wji.

Closely related to the matrix of bilateral exposures is the adjacency matrix

that describes the structure of the network without referring to the details

of the exposures.
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Definition 3. The entries aij of the adjacency matrix A(G) are 1 if there is

an exposure between i and j and zero otherwise.

The interconnectedness of a node can be defined as the in- and out-degree of

the node.

Definition 4. The in-degree din(i) and out-degree dout(i) of a node i are

defined as:

din(i) =
n∑
j=1

aji , dout(i) =
n∑
j=1

aij (13)

and give a measure for the interconnectedness of the node i in a directed

graph G(V,E). The two degrees are equal for directed graphs.

The size of a node i can be defined analogously to its interconnectedness in

terms of the value in- and out-degree.

Definition 5. The value in- and out-degree of a node are defined as:

vdcin(i) =

∑n
j=1wji∑n

k=1

∑n
j=1wkj

∈ [0, 1] (14)

vdcout(i) =

∑n
j=1wij∑n

k=1

∑n
j=1wjk

∈ [0, 1] (15)

and give a measure for the size of the node. The value in-degree is a measure

of the liabilities of a node, while the value out-degree is a measure of its

assets.

A quantity that can be used to characterise a network is its average path

length. The average path length of a network is defined as the average length

of shortest paths for all pairs of nodes i, j ∈ V . Another commonly used

quantity to describe the topology of a network is the clustering coefficient,
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introduced by Watts and Strogatz (1998) in their seminal work on small-

world networks. Given three nodes i, j and k, with i lending to j and j

lending to k, the clustering coefficient can be interpreted as the probability

that i lends to k as well. For i ∈ V , the number of opposite edges of i is

defined as

m(i) := |{j, k} ∈ E : {i, j} ∈ E and {i, k} ∈ E| (16)

and the number of potential opposite edges of i as

t(i) := d(i)(d(i)− 1) (17)

where d(i) = din(i) + dout(i) is the degree of the vertex i. The clustering

coefficient of a node i is then defined as

c(i) :=
m(i)

t(i)
(18)

and the clustering coefficient of the whole network G = (V,E) is defined as

C(G) :=
1

|V ′|
∑
i∈V ′

c(i) (19)

where V ′ is the set of nodes i with d(i) ≥ 2. The average path length of

the whole network can be defined for individual nodes. The single source

shortest path length of a given node i is defined as the average distance of

this node to every other node in the network.

It is possible to distinguish between a number of networks by looking at their

average path length and clustering coefficient. One extreme type are regular

networks which exhibit a large clustering coefficient and a large average path

18



length. The other extreme are random networks which exhibit a small clus-

tering coefficient and a small average path length. Watts and Strogatz (1998)

define an algorithm that generates a network which is between these two ex-

tremes. They could show that “small-world networks” exhibit both a large

clustering coefficient and small average path length. A large number of real

networks, such as the neural network of the worm Caenorhabditis elegans,

the power grid of the western United States, and the collaboration graph

of film actors are small-world networks. From a systemic risk perspective,

small-world networks are interesting as it is reasonable to assume that the

short average path length and high clustering of small-world networks make

them more vulnerable to contagion effects than random or regular networks.

Small-world networks can be created by using the algorithm defined in Watts

and Strogatz (1998). The starting point for this is a regular network of N

nodes where each node is connected to its m neighbours. The algorithm now

loops over all links in the network and rewires each link with a probability

β. For small values of β (about 0.01 to 0.2), the average path length drops

much faster than the clustering coefficient, so it is possible to have a situation

of short average path length and high clustering. A small-world network is

shown on the left side of Figure (2) with N = 50, k = 4, β = 0.05.

Scale-free networks are another interesting class of networks. They are char-

acterized by a logarithmically growing average path length and approxi-

mately algebraically decaying distribution of node-degree (in the case of an

undirected network). They were originally introduced by Barabási and Al-

bert (1999) to describe a large number of real-life networks, such as social
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networks, computer networks and the World Wide Web. To generate a scale-

free network one starts with an initial node and continues to add further

nodes to the network until the total number of nodes is reached. Each new

node is connected to k other nodes in the network with a probability that is

proportional to the degree of the existing node. When thinking about finan-

cial networks, this preferential attachment resembles the fact that larger and

more interconnected banks are generally more trusted by other market par-

ticipants and therefore form central hubs in the network. On the right-hand

side of Figure (2) a scale-free network with N = 50 and k = 2 is shown. A

number of empirical studies find real-world interbank markets to be scale-

free (see, for example, Cajueiro and Tabak (2007), Iori et al. (2008)). Cont

and Moussa (2009) show that a scale-free interbank network will behave like

a small-world network when Credit Default Swaps (CDS) are introduced.

In this sense, a CDS acts as a “short-cut” from one part of the network

to another. This paper therefore focuses on these three classes of networks

(random, scale-free and small-world) to analyze their impact on systemic risk

through contagion effects.

3.4. Model Parameters

There are 18 model parameters that control the numerical simulation. If not

stated otherwise, numerical simulations were performed with the parameters

given in this section. The simulations were performed with N = 100 banks

and τ = 1000 update steps each. Note that the simulation results do not

change if the number of banks is increased. It has to be ensured, however,

that the number is sufficiently large for differences in the network topologies

to become significant enough to be visible in the simulation results. The
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Figure 2: On the left: a small-world network that was created using the algorithm of Watts

and Strogatz (1998) with N = 50, k = 4 and β = 0.05. On the right: a scale-free network

that was created using the methodology introduced in Barabási and Albert (1999) with

N = 50 and m = 2. The colour is an indication for the single source shortest path length

of the node and ranges from white (large) to red (short).

number of update steps has to be large enough for the system to reach a

steady state from where the results change only little. Every simulation was

repeated numSimulations=100 times to average out stochastic effects. The

interest rate on deposits was chosen to be rd = 0.02 and the main refinanc-

ing rate as rb = 0.04, which resembles the situation in the eurozone prior

to the crisis. The required reserve rate is r = 0.02 which is in line with

legal requirements, for example, in the eurozone. The interbank connection

level for random graphs is denoted as connLevel∈ [0, 1]. At a connLevel=0

there is no interbank market and at connLevel=1 every bank is connected to

every other bank. If not stated otherwise, a connection level of 0.2 is used.

For scale-free networks the parameters m = 1, 2, 4, 10, and for small-world

networks the parameters β ∈ [0.001, 0.1] were used.
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Two sets of parameters are used to describe the influence of the real economy

on the model. The first set is the probability that a credit is returned success-

fully, pf = 0.97 (3% of the credits will default). The return for a successful

returned credit is taken to be ρ+f = 0.09 and in case a credit defaults, the neg-

ative return on the investment is ρ−f = −0.05. The choice of parameters again

resembles the situation in the eurozone and will sometimes be referred to as

“normal” parameters. As “crisis” parameters, ρ+f = 0.97 and ρ−f = −0.08

were used. This implies that banks have larger losses on their risky assets in

times of crises. To plan their optimal portfolio, the banks have an expected

credit success probability pb and expected credit return ρ+b . It is assumed

that these expected values correspond to the true values from the real econ-

omy. The optimal portfolio structure and volume of a bank also depend also

on its risk aversion parameter θ. For each bank, θ ∈ [1.67, 2.0] was chosen

randomly to allow for heterogeneity in the banking sector. For θ < 1.67, and

given all other chosen parameters, portfolio theory would imply that banks

hold no risk-free assets. The value of the factor of constant relative risk aver-

sion is subject to an ongoing debate, even though a value greater than 1 is

well established (see for instance the discussion in Ait-Sahalia and Lo (2000)).

Deposit fluctuations are modelled as a random walk:

Dk
t = (1− γk + 2γkx)Dk

t−1 (20)

with γk = 0.02 (in “normal” times) and γk = 0.1 (during a “crisis” period)

can be interpreted as a scaling parameter for the level of deposit fluctuations

and x being a random variable with x ∈ [0, 1]. The fraction of a bank’s

investments that the central bank accepts as collateral is set to αk = 0.8,
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assuming that banks invest only in assets which have a good rating. It is

assumed that shareholders can find more profitable investment opportunities

than the deposit facility of the central bank and will thus push for banks

to pay out as much of the end-of-period-profits as possible. Thus, all excess

liquidity at the end of the period (i.e. after banks have satisfied their optimal

investment plans and engaged in interbank lending) will be paid out to the

banks’ shareholders.

4. Results

The three key questions that this paper answers are: (i) Are some network

structures more resilient to systemic risk than others? (ii) Can central banks

stabilize interbank markets? And (iii) How does a common shock to the

banking capital of all banks interact with the counterparty risk externality?

Each of these questions is addressed in turn.

4.1. Interbank network structure and financial stability

In Figure (3) the impact of different network topologies on financial stabil-

ity in times of crisis and normal times is shown for random topologies with

varying connectivity. It can be seen that the difference in network topology

is not significant during normal times. In times of crisis, however, the differ-

ent levels of interconnectedness come into play. Figure (3) also confirms the

result of Nier et al. (2008), who show that the relationship between the level

of interconnectedness on interbank markets and financial contagion is non-

monotonic. If there is no interconnectedness, banks are unable to achieve

short-term funding on the interbank market and become insolvent. When

the connection level is increased to 0.2, more banks survive in the long run.
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However, when the connection level is increased even further, the system en-

ters the contagious regime where an initial default can reach a large number

of banks and lead to widespread default cascades. This is precisely the tip-

ping point behaviour that Gai and Kapadia (2010) show in a static setting

generalized to a dynamic framework. Being in the contagious regime implies

that an initial shock (e.g. an idiosyncratic shock to a single bank leading to

its default) can spread to the entire system and cause a system-wide crisis.

Being in the non-contagious regime implies that any initial shock will be

contained within a small fraction of the system.

Figure 4 shows that contagion effects tend to be larger in random networks

than in small-world networks, where, in turn, contagion effects tend to be

larger than in scale-free networks.10 This implies that analyses which are

conducted with static random networks can overestimate contagion effects.

Empirical analyses of interbank networks find them to be of a ”money center

type”, where a small number of large banks is very highly interconnected and

a large number of banks is very little interconnected. This is good news in

the light of the results in this section as it implies that contagion effects will

be limited.

For increasing levels of interconnectedness in random networks, it can be

seen from Figure (3) that there exists a tipping point, where the networks

become endogenously instable. To better understand this, the interbank

10In accordance with the results of Figure 3, the effect of different network topologies is

negligible in normal times.
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loan volume is depicted in Figure (5) for random and scale-free networks. As

Ladley (2011) argues, the knife-edge property of interbank markets requires

shocks to be small in order to exihibt a stabilizing effect. Figure (5) shows an

increase in interbank market volume until a tipping point, where the amount

of interbank loans becomes large and contagion effects dominate. This in

turn leads to an increasing number of insolvencies that spread more easily in

the system if the level of interconnectedness increases.

4.2. The effect of central bank policy

To answer the question of what impact central bank activity has on financial

stability, I first varied the level of collateral αk that is accepted by the central

bank in order to provide liquidity to banks. For αk = 1.0 the central bank

will accept all assets of commercial banks as collateral, while for αk = 0.0,

no assets will be accepted. Thus, αk is used as a parameter to determine the

fraction of assets that are of sufficient quality to be accepted as collateral.

Banks will obtain liquidity for the amount of collateral that they can deposit

at the central bank. In Figure (6) it can be seen that a significant stabilizing

effect from the liquidity provision by the central bank is obtained above a

certain threshold. The precise value of the threshold depends on the specific

parametrization and network structure used, but its existence is confirmed

for all simulations conducted. However, this stabilizing effect is non-linear in

αk which implies that, on the one hand, even slight changes in the collateral

requirements can have significant stabilizing effects if performed around the

critical value. On the other hand, even large changes can have very little effect

if performed away from the critical value. The effect on the number of active

banks is similar for both, the normal and the crisis scenario. In the bottom
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panel of Figure (6) the impact of the collateral requirements on the volume of

interbank loans is displayed. It can be seen that abundant provision of central

bank liquidity will lead to a crowding-out effect on interbank liquidity. It can

further be seen, that a large amount of interbank liquidity is correlated with

high financial instability when looking at the top panel of Figure (6). This

is precisely the knife-edge property of interbank markets: if the exposures

amongst banks are too large, an initial knock-on effect will be amplified in

the system.

4.3. The impact of common shocks on financial stability

To understand the impact of different forms of systemic risk on financial

stability, Figure (7) compares two different types of shocks. In the case of

pure interbank contagion, the largest bank in the system is selected and

exogenously sent into default (caused, for example, by a idiosyncratic shock

to the banking capital). In the event of a common shock, all banks suffer

a simultaneous loss of x% on their banking capital. The impact of each

of these shocks on the remaining number of active banks in the system is

depicted at the top of Figure (7). To analyze the impact the different shocks

have on the liquidity provision in interbank markets, at the bottom, Figure

(7) shows the interbank market volume. When a common shock hits the

system, banks with insufficient equity will go into insolvency. While this

might be only a small number of banks, a larger number of banks become

more vulnerable to deposit and asset return fluctuations. As was seen in

Figure ( refResults:Fig3), shocks that exceed a certain threshold will lead

to an increased number of insolvencies in the system. When banks become

more vulnerable, this threshold is reached more easily and the whole system
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remains unstable as long as the volume on the interbank market (and hence

the magnitude of possible shocks) leads to increased insolvencies. When the

crisis hits, the volume of interbank transactions drops until it has reached

a level where the endogenous deposit and asset return fluctuations will not

lead to an increased number of insolvencies. Comparing the case of common

shocks to the case of interbank contagion, it can be seen that, while the

impact of a common shock on the number of active banks is more severe

than in the contagion case, the opposite holds true for interbank market

liquidity. The pure contagion case has a substantial impact on interbank

market liquidity, which, on the other hand, implies a smaller size of shocks

due to endogenous fluctuations.

5. Discussion

The model presented in this paper gives rise to a number of interesting ques-

tions that could be addressed, but are beyond the scope of the present paper.

Varying required reserves. This paper considers the effect of central bank

policy on financial stability. In particular, it analyzes how central bank liq-

uidity provision can prevent widespread default cascades. However, liquidity

provision through open market operations and via the standing facilities is

not the only tool available to central banks. Another possibility would be

to vary the required deposit rate. Such a variation between r = 0.01 and

r = 0.25 is shown in Figure (8). It can be seen that varying reserve re-

quirements has a positive but small effect on financial stability. This is not

surprising since the required reserves in this model act as a constraint on the
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available risky investment (see Equation (1). Less risky investment almost

mechanically implies a higher level of financial stability.

Introducing new banks. The model as presented in this paper does not allow

the entry of new banks in the course of the simulation. As a measure of

financial stability, I used the number of active banks over time. A regime

of financial instability is characterized by a relatively larger number of bank

insolvencies at every point in time. While this simple measure captures the

behaviour of banking crises, it is reasonable to ask how the results would

change if new banks were allowed to enter the model. One way to introduce

new banks into the system is by taking competition amongst banks explicitly

into account. As long as there are banks which make profits (i.e. are able

to pay out dividends), there is an incentive for another bank to enter the

market and compete for those profits. In the present model, however, banks

are myopic profit maximizers and not in direct competition with each other.

This could be because the banks in this paper have regional monopolies.

In order to quantify the effect of new banks entering the system nonetheless,

Figure (9) uses a crisis scenario and a scale-free network with m = 10. In

contrast to Figure (4), however, I now allow a bank to enter each k update

steps. The simulations start with K0 = 0, 80, 50, 100 active banks and a new

bank is added regularly until at t = 1000 there would be 100 active banks if

there is no insolvency. This simple method makes it possible to characterize

the long-run state of the model. It can be seen from Figure (9) that the

effect of new bank entries diminishes over time and that a steady state will
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be achieved. Which steady state is achieved, however, depends on the number

of bank entries, where more bank entries yield a higher number of banks in

the steady state. The intuition behind this result is that default cascades

can wipe out a larger part of the financial system when there are more banks

initially. While this result gives some intuition about the impact of new

banks entering the system, it cannot fully substitute for an analysis of bank

competition. Such an analysis, however, will require significant improvements

to the microfoundation of banking behaviour.

6. Conclusion

This paper analyzes different forms of systemic risk in a dynamic multi-agent

simulation with portfolio-optimizing banks that engage in bilateral interbank

lending. Three key results are obtained. First, complementing the existing

literature, which analyzes static interbank networks only, this paper shows

that the interbank network structure does have a substantial impact on finan-

cial stability only in times of distress. Second, this paper also incorporates

the central bank and shows that central bank intervention can alleviate finan-

cial distress and liquidity shortages on interbank markets in the short run.

Finally, this paper shows that banks become more vulnerable to endogenous

fluctuations and occasional idiosyncractic insolvencies when a common shock

strikes the entire banking system. While interbank contagion drains inter-

bank liquidity and can thus be alleviated by central bank liquidity provision,

an abundance of liquidity will lead to even further insolvencies when systemic

risk manifests itself as a common shock.
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The results in this paper therefore also shed a novel light on the emergency

measures undertaken by central banks at the height of the 2007/2008 finan-

cial crisis. While abundant central bank liquidity provision was necessary

to ensure the functioning of interbank markets in the short run, the long-

run effects of this liquidity provision will be significantly smaller and central

banks inadvertently increase the risk of the financial system entering into a

contagious regime.

From the perspective of policymakers, this paper provides evidence that the

topology of the interbank network has to be taken into account. The inter-

bank network topology, however, is highly dynamic and varies from day to

day. This implies that further analyses of this dynamic behaviour are neces-

sary in order to understand the full impact of the network topology on the

propagation of shocks.
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Figure 3: The effect of different network topologies on financial stability. Top: crisis sce-

nario and random topology. Bottom: normal scenario and random topology. Connection

levels of connLevel= 0.0, 0.2, 0.4, 0.6, 0.8, 1.0 were used.
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Figure 4: The effect of different network topologies on financial stability. Top: crisis

scenario and scale-free (BA) network with m = 1, 2, 4, 10. Bottom: crisis scenario and

small-world (WS) network with β = 0.001, 0.005, 0.01, 0.05, 0.1.
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Figure 5: The effect of different network topologies on interbank loan volume.

Top: Crisis scenario and random topology, with connection levels of connLevel=

0.0, 0.2, 0.4, 0.6, 0.8, 1.0. Bottom: Crisis scenario and scale-free network with m =

1, 2, 4, 10.
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Figure 6: The effect of central bank activity for different scenarios. Top: Number of

active banks over simulation time for a random network with connectivity of 0.2. Bottom:

Interbank loan volume over simulation time for a random network with connectivity of

0.2. The central bank activity αk varied between αk = 0.0 and αk = 1.0.

34



0 250 500 750 1000
00

20

40

60

80

100

120

140

Time t

# 
of

 A
ct

iv
e 

B
an

ks
Interbank contagion (largest bank)
Common shock (10% equity loss)
Common shock (20% equity loss)

0 250 500 750 1000

20

40

60

80

100

120

140

160

20

40

60

80

100

120

140

160

Time t

In
te

rb
an

k 
lo

an
 v

ol
um

e 
L

Interbank contagion (largest bank)
Common shock (10% equity loss)
Common shock (20% equity loss)

Figure 7: The impact of different forms of systemic risk on financial stability and interbank

loan volume in a crisis scenario with random network and a connection level of 0.2. Top:

number of active banks over time. Bottom: interbank loan volume over time. Shocks were

exogenously applied at t = 400.
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Figure 8: Number of active banks when reserve requirements are varied. A crisis scenario

with central bank activity is used. Top: Highly connected random interbank network with

connectivity level of 0.5. Bottom: scale free network with m = 4.
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Figure 9: Number of active banks and volume of interbank lending when new banks enter

the system.
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